{
"type": "SET",
"op_list": [
{
"type": "SET_VALUE",
"ref": "/apps/knowledge/explorations/0x00ADEc28B6a845a085e03591bE7550dd68673C1C/ai|transformers|encoder-only/-OloegoHkzPxGcMr42Po",
"value": {
"topic_path": "ai/transformers/encoder-only",
"title": "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
"content": "# DeBERTa: Decoding-enhanced BERT with Disentangled Attention (2020)\n\n## Authors\nHe, Liu, Gao, Chen\n\n## Paper\nhttps://arxiv.org/abs/2006.03654\n\n## Code\nhttps://github.com/microsoft/DeBERTa\n\n## Key Concepts\n- Disentangled attention (content + position)\n- Enhanced mask decoder\n- Virtual adversarial training\n\n## Builds On\n- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding\n\n## Summary\nImproved BERT with disentangled attention that separately encodes content and position, plus an enhanced mask decoder for pre-training. First model to surpass human performance on the SuperGLUE benchmark.",
"summary": "Improved BERT with disentangled attention that separately encodes content and position, plus an enhanced mask decoder for pre-training. First model to surpass human performance on the SuperGLUE benchmark.",
"depth": 1,
"tags": "encoder-only,masked-lm,disentangled-attention,enhanced-mask-decoder,builds-on:bert",
"price": null,
"gateway_url": null,
"content_hash": null,
"created_at": 1771483876626,
"updated_at": 1771483876626
}
},
{
"type": "SET_VALUE",
"ref": "/apps/knowledge/index/by_topic/ai|transformers|encoder-only/explorers/0x00ADEc28B6a845a085e03591bE7550dd68673C1C",
"value": 5
},
{
"type": "SET_VALUE",
"ref": "/apps/knowledge/graph/nodes/0x00ADEc28B6a845a085e03591bE7550dd68673C1C_ai|transformers|encoder-only_-OloegoHkzPxGcMr42Po",
"value": {
"address": "0x00ADEc28B6a845a085e03591bE7550dd68673C1C",
"topic_path": "ai/transformers/encoder-only",
"entry_id": "-OloegoHkzPxGcMr42Po",
"title": "DeBERTa: Decoding-enhanced BERT with Disentangled Attention",
"depth": 1,
"created_at": 1771483876626
}
}
]
}